A new NASA Mars probe began a 10-month voyage to the Red Planet Monday, blasting off on a $671 million mission to study the thin martian atmosphere in a bid to find out what triggered a dramatic case of climate change that turned a once-hospitable environment into a cold, presumably barren desert.
"Something clearly happened," said Principal Investigator Bruce Jakosky. "Water was abundant on early Mars, the environment was something that was capable of supporting liquid water yet today we see a cold, dry planet that is not able to support water. What we want to do is to understand what are the reasons for that change in the climate."
Taking off just ahead of approaching clouds, NASA's Mars Atmosphere and Volatile Evolution -- MAVEN -- spacecraft, mounted inside a protective nose cone atop a United Launch Alliance Atlas 5 rocket, blasted off on time from the Cape Canaveral Air Force Station at 1:28 p.m. EST (GMT-5).
Generating 860,000 pounds of thrust, the first stage majestically boosted the rocket out of the dense lower atmosphere and fell away just over four minutes after liftoff. The rocket's hydrogen-fueled Centaur second stage then ignited for the first of two planned "burns," firing for nine-and-a-half minutes to complete the initial phase of ascent.If all goes well, the 2.5-ton spacecraft will reach Mars on September 22, 2014, braking into an elliptical orbit with an eventual high point of around 3,860 miles and a low point of just 93 miles. That will allow the spacecraft to repeatedly fly through the upper reaches of the martian atmosphere to directly sample its constituents and map out its structure.
In addition, MAVEN will carry out five "deep dip" sessions lasting about five days each, dropping to a low point of around 78 miles to study the atmosphere in "well mixed" regions where it is 30 times denser than the much thinner "air" the spacecraft normally samples.
"Something clearly happened," said Principal Investigator Bruce Jakosky. "Water was abundant on early Mars, the environment was something that was capable of supporting liquid water yet today we see a cold, dry planet that is not able to support water. What we want to do is to understand what are the reasons for that change in the climate."Taking off just ahead of approaching clouds, NASA's Mars Atmosphere and Volatile Evolution -- MAVEN -- spacecraft, mounted inside a protective nose cone atop a United Launch Alliance Atlas 5 rocket, blasted off on time from the Cape Canaveral Air Force Station at 1:28 p.m. EST (GMT-5).
Generating 860,000 pounds of thrust, the first stage majestically boosted the rocket out of the dense lower atmosphere and fell away just over four minutes after liftoff. The rocket's hydrogen-fueled Centaur second stage then ignited for the first of two planned "burns," firing for nine-and-a-half minutes to complete the initial phase of ascent.If all goes well, the 2.5-ton spacecraft will reach Mars on September 22, 2014, braking into an elliptical orbit with an eventual high point of around 3,860 miles and a low point of just 93 miles. That will allow the spacecraft to repeatedly fly through the upper reaches of the martian atmosphere to directly sample its constituents and map out its structure.
In addition, MAVEN will carry out five "deep dip" sessions lasting about five days each, dropping to a low point of around 78 miles to study the atmosphere in "well mixed" regions where it is 30 times denser than the much thinner "air" the spacecraft normally samples.
No comments:
Post a Comment